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Abstract

The first parts of the course will be devoted to the control of scalar wave-type
equations and their abstract version. We will recall the abstract setting in the semi-
group framework and the dual notions of observability and controllability, through
the Hilbert Uniqueness Method. We will also present some of the tools to prove the
admissibility and the observability for such equations. The second part of the course
will present some motivations and recent results on controllability/observability for
coupled hyperbolic systems by a reduced number of controls/observations. This
situation occurs whenever the number of controls is strictly less than the number
of unknowns (or equations) of the coupled system of PDE’s. The main goal is to
control all the components of the state-vector, even though some of them are not
directly controlled. Similar questions occur for the null-controllability of parabolic
(resp. Schrödinger) coupled systems. We consider localized as well as boundary
controls, and localized couplings. In all these cases, one of the main challenging
question is to be able to control the full system by controls such that the control
region do not meet the region where the coupling is localized. We will present
several positive results in this direction for hyperbolic systems and further give
applications to null controllability for parabolic and Schrödinger coupled systems
by a reduced number of controls.
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Vol. 1–2, Masson, Paris (1988).

[20] L. Miller, The control transmutation method and the cost of fast controls.
Siam J. Cont. Opt. 45, 762–772 (2006).

[21] G. Olive, Null-controllability for some linear parabolic systems with con-
trols acting on different parts of the domain and its boundary. Mathematics
of Control, Signals and Systems 23, 257–280 (2012).

[22] K.-D. Phung, Observability and control of Schrödinger equations. Siam J.
Cont. Opt. 40, 211–230 (2001).

[23] L. Rosier and L. de Teresa, Exact controllability of a cascade system of
conservative equations. C. R. Acad. Sci. Paris, Ser. I 349, 291–296 (2011).

[24] T. Seidman, Two results on exact boundary control of parabolic equations.
Appl. Math. Optim. 11, 145–152 (1984).

3


